Boundary preconditioners for mixed finite-element discretizations of fourth-order elliptic problems

نویسنده

  • D. Loghin
چکیده

Abstract We extend the preconditioning approach of Glowinski and Pironneau, and of Peisker to the case of mixed finite element general fourth-order elliptic problems. We show that H−1/2-preconditioning on the boundary leads to mesh-independent performance of iterative solvers of Krylov subspace type. In particular, we show that the field of values of the boundary Schur complement preconditioned by a discrete H−1/2 boundary norm is bounded independently of the discretization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substructure Preconditioners for Elliptic Saddle Point Problems

Domain decomposition preconditioners for the linear systems arising from mixed finite element discretizations of second-order elliptic boundary value problems are proposed. The preconditioners are based on subproblems with either Neumann or Dirichlet boundary conditions on the interior boundary. The preconditioned systems have the same structure as the nonpreconditioned systems. In particular, ...

متن کامل

Adaptive Multilevel Techniques for Mixed Finite Element Discretizations of Elliptic Boundary Value Problems Technische Universit at M Unchen Cataloging Data : Adaptive Multilevel Techniques for Mixed Finite Element Discretizations of Elliptic Boundary Value Problems

We consider mixed nite element discretizations of linear second order elliptic boundary value problems with respect to an adaptively generated hierarchy of possibly highly nonuniform simplicial triangula-tions. By a well known postprocessing technique the discrete problem is equivalent to a modiied nonconforming discretization which is solved by preconditioned cg-iterations using a multilevel B...

متن کامل

Preconditioning a class of fourth order problems by operator splitting

We develop preconditioners for systems arising from finite element discretizations of parabolic problems which are fourth order in space. We consider boundary conditions which yield a natural splitting of the discretized fourth order operator into two (discrete) linear second order elliptic operators, and exploit this property in designing the preconditioners. The underlying idea is that effici...

متن کامل

Multilevel Approaches to Nonconforming Finite Element Discretizations of Linear Second Order Elliptic Boundary Value Problems

We consider adaptive multilevel techniques for nonconforming nite element dis-cretizations of second order elliptic boundary value problems. In particular, we will focus on two basic ingredients of an eecient adaptive algorithm. The rst one is the iterative solution of the arising linear system by preconditioned conjugate gradient methods and the second one is an a posteriori error estimator fo...

متن کامل

Preconditioners for higher order finite element discretizations of H(div)-elliptic problem

In this paper, we are concerned with the fast solvers for higher order finite element discretizations of H(div)-elliptic problem. We present the preconditioners for the first family and second family of higher order divergence conforming element equations, respectively. By combining the stable decompositions of two kinds of finite element spaces with the abstract theory of auxiliary space preco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004